Small Active Receiving Loop Antennas Wellbrook ALA1530LNP

Glyn Thomas M0XGT IVARC 23rd June 2017 additional slides 11th Aug 2017

IVARC Talk –Active Loops DRAFT, M0XG

Active Small Loop Antennas

Motivation

- **1. Remote field strength measurement** portable antenna, use calibrated or as a standard reference antenna.
- **2. Urban noise** can a loop help with near-field electric noise in cities?
- **3. Compact** need for small compact antennas in a city environment, use in garden, indoors or loft, portable.
- **4. Wide-band response -** 50kHz to 30MHz with no tuning, good fit to wide-band SDR receivers. Competition use.
- 5. How does it **compare** with resonant wire antennas?

Small Active Rx Loop Antennas

Wellbrook ALA1530NLP

50kHz-30MHz Active Rx Loop Loop + low-noise front-end (LNA) and bias-tee + preamp G=8.5dB, NF=3.5dB

Size

Loop diameter 0.950m tube diameter 0.020m Circumference 2.98m

LF/HF Noise

Atmospheric noise and man-made noise levels are very high at LF/HF and given by noise figure *Fa* in dB above terrestrial thermal noise @290K (*Fa* - 174dBm, ideal isotropic antenna, *G*=0dB)

Examples: median city noise (above thermal background) is about 70dB @ 1.8MHz (-104dBm) , and 55dB @7MHz (-119dBm).

Typical HF receiver noise figure NF about 10-15dB

- \Rightarrow weak signals limited by atmospheric noise, not RX NF,
- \Rightarrow scope to reduce antenna size (aperture and gain) paired with a lownoise system/LNA, NF < 1dB.

minimum noise level expected

 F_a versus frequency (10⁴ to 10⁸ Hz)

Near-Field of Noise Sources

A city or urban environment will contain many local man-made noise sources that raise the noise level above the natural atmospheric *Fa* – Are there characteristics that can be used to mitigate them?

- 1. Direction small loops have directivity and can be rotated to null noise.
- 2. Near-field noise is due to E- and H-fields that are 'bound' to the radiator and decay faster than 1/r with distance – small loops can be moved, increase distance.
- 3. Near-field E- and H-fields may be E-dominant or H-dominant depending on the nature of the radiator:
	- a. electric dipole $|E|/|H| \gg 377$ Ohm typical of urban city / indoor environment.
	- b. magnetic current loop, |E|/|H| << 377 Ohm
	- c. radio waves and far-field $|E|/|H|$ = 377 Ohm

Small loop reacts to dB/dt, $B=\mu H$, and is an H-field sensor \Rightarrow ideal if local $\left|E\right|/\left|H\right| \Rightarrow 377$ Ohm – urban environment

Schematic: Loop and LNA

Radiation and Loss Resistance

Radiation resistance

$$
R_{rad} = \eta \frac{8}{3} \pi^3 \left(\frac{A}{\lambda^2}\right)^2 \propto f^4
$$

Loss resistance

$$
R_{loss} = \frac{C}{2\pi a} R_s \propto f^{\frac{1}{2}}
$$

$$
R_s = (\pi f \mu \rho)^{\frac{1}{2}}
$$

Loop reactance

$$
X_L = 2\pi f L
$$

Antenna Factors K_F & K_H

We need to relate the electric field strength E [V/m], or power density [W/m²], of a radio wave to the voltage induced on the antenna terminals.

Antenna factor K $_{\rm\scriptscriptstyle E}$ [/m] gives the external E-field magnitude E $_{\rm 0}$ from the terminal voltage V_0

$$
E_0 = K_E V_0
$$

A radio wave has an electric field E_0 [V/m] and magnetic field H₀ [Am] which are proportional, so that $H_0 = E_0 / \eta$ where $\eta = 120\pi = 377\Omega$ and if we measure K_H with a loop we can define an equivalent K_E as $K_E = K_H \eta$

Loop induced voltage:

$$
V_o = \frac{(2\pi f)\mu A}{\eta}E_0 = \frac{2\pi^2 R^2}{\lambda}E_o = \frac{1}{K_E}E_o \text{ and } K_E = \frac{c}{2\pi^2 R^2} \frac{1}{f}
$$

For small loops R $<< \lambda$ and terminal voltage scales as $V_0 \propto f$, hence need to flatten the response.

$Loop Z = R + jX : O$ to 30MHz

Loop impedance $Z = R + j^*X$ and $|Z|$ over range 0 - 30 MHz measured using a tinyVNA.

LNA input $Z_{\text{in}} = R + jX : 0$ to 30MHz

Input Impedance of the front-end LNA, $Z_{\text{in}} = R + jX$ over range 0 - 30 MHz.

Gain Flattening – LNA response

Given that the loop has a frequency response proportional to frequency we need to arrange for the LNA to have an inverse frequency response.

Choose the load impedance R_L to be small compared to loop inductance X_L and large compared to the radiation and loss resistances. The current into the load is then approximately $\mathsf{V}_0/2\pi$ fL and the system gain including antenna factor and LNA is roughly

Output of LNA at bias-tee	Vout	R_G	$2\pi^2 R^2 \frac{f}{c}$	$\frac{1}{2\pi f L}$	E_o
---------------------------	------	-------	--------------------------	----------------------	-------

which is flat wrto frequency. There is low frequency roll-off around 50kHz where X_L is not large and an upper limit imposed by the loop resonance around 30MHz.

Calibration – standard H-field

Calibration – basic idea

- 1. Use a small Tx loop to establish a defined Hfield
- 2. Measure I₀ in Tx loop
- 3. Calculate equivalent E-field, E_{equiv}
- 4. Measure Rx loop terminal voltage V_0
- 5. Antenna factor K = E_{equiv}/V_0

$$
E_{equiv} = \frac{60\pi r_1^2 I_0}{(d^2 + r_1^2 + r_2^2)^{\frac{3}{2}}} \left[1 + \left(\frac{2\pi d}{\lambda}\right)^2 \right]
$$

See, Taggart & Workman (1969), Calibration principles and procedures for field strength meters 3Hz to 1GHz. Technical note 370, US National Bureau of Standards.

d r1 r2 $Tx \downarrow$ Rx

Small Tx loop with current I_o, equivalent E-field induced in Rx loop

Wideband Spectrum 0-30MHz

Wideband Loop - 0-30MHz spectrum, rotated in two positions

NetSDR screen grabs (20m)

PSK and friends TSK and friends and the state of the

WSPRnet received spots (20m)

WSPRnet received spots (40m)

24hr collection, loop located indoors

Further Adventures with Wideband RX Loops

- 1. Identifying VDSLx interference from wideband spectra
- 2. Reverse Engineering the Wellbrook some low cost alternatives
- 3. Comparing the LZ1AQ loop amplifier with the Wellbrook

Identifying Interference: VDSLx bands

- 1. VDSLx Spectum is allocated into UPSTREAM U0, U1, U2 and DOWNSTREAM D1, D2, D3 bands separated by 50-100kHz guard bands.
- 2. Band edges are a good way to identify the presence of local VDSLx interference. Near the house the UPSTREAM is stronger, further away at the street cabinet the DOWNSTREAM will dominate.
- 3. On longer wires and lower data-rate service higher bands U2 & (D2) D3 are not used.

See RSBG publication: EMC Leaflet 15 - VDSL Interference to HF radio, <http://rsgb.org/main/files/2012/11/VDSL-Interference-v3b-.pdf>

Spectra at M1CNK's location 0-20MHz OCFD dipole vs. Wellbrook Loop

Strong D1 + D2 (and possibly D3), away from house towards cabinet end. OCFD tuned to 7MHz.

Spectra at M0XGT's location, 0-30MHz

Spectra at G3ROG's location 0-30MHz Wellbrook Loop

Strong wideband signals 21-25MHz *above* VDSL range , U2 edges at 8.5MHz & 12MHz.

Commercial LZ1AQ Loop Amplifier

Both E-field (dipole) and H-field (current loop) signal paths with remote controlled relay switching to select / combine the inputs. Dual loop diversity system.

CP₅ $CP7$ Select Loop A Jumper P3—P6 pin '

Dipole₁, J_{1a b} Rel. a +B Loop

Andy G4JNT modified LZ1AQ LNA

Low Z_{in} LNA with internal bias-T.

Original LZ1AQ design feeds 100Ω twisted pair Ethernet cable, G4JNT mod'd for 50 Ω coax and lower power consumption. 60cm loop Diameter.

Current Sensor Mini-Circuits LNA + Bias-T

Current Sensor: 1:10 turns ratio + current choke. Input impedance – $R^{\sim}1$ -3 Ω , X \sim 2 π fL, L=0.15 μ H (tinyVNA)

LNA: Mini-Circuits ZFL-500LN G=24dB, NF<3dB, 0.1-500MHz Bias-T - ZFBT-6GW Can be used either as loop RX or to calibrate a TX loop.

Compare Wellbrook & LZ1AQ Noise floor and Signals 1 to 31MHz

Wellbrook LNA versus ZFL500LN/Coupler 14MHz/|BW10kHz PSK, FT-8, JT-65

Wellbrook LNA versus ZL1AQ loop LNA 14MHz/10kHzBW PSK, FT-8, JT-65

